$$ \boldsymbol{\huge{\style{color:#6059f6;}{-1,17}=\style{color:#6059f6;}{- \frac{117}{100}} = \style{color:#6059f6;}{-1 \frac{17}{100}}}} $$
Ponieważ nasza liczba to ułamek dziesiętny, zamieniamy ją na ułamek zwykły lub liczbę mieszaną.
Krok 1
Liczymy ilość miejsc po przecinku.
W liczbie -1,17 są 2 miejsca po przecinku.
Krok 2
Ustalamy mnożnik dzięki, któremu pozbędziemy się ułamka dziesiętnego.
Sposób 1.
Naszym mnożnikiem będzie liczba, w której na pierwszym miejscu jest 1 i tyle zer, ile jest miejsc po przecinku, czyli 2 zera.
Więc nasz mnożnik to liczba:
$$\huge{\style{color:#6059f6;}{1}\style{color:#dc4b1d;}{00}} $$
Sposób 2.
Naszym mnożnikiem będzie liczba 10 podniesiona do potęgi, w której wykładnikiem jest ilość miejsc po przecinku, w naszym przypadku 2.
Czyli nasz mnożnik to liczba:
$$\huge{\style{color:#6059f6;}{10}^{\style{color:#dc4b1d;}{2}} = \style{color:#6059f6;}{1}\style{color:#dc4b1d;}{00}} $$
Krok 3
Zapisujemy naszą liczbę w formie ułamka z mianownikiem 1.
$$\huge{\style{color:#6059f6;}{}\frac{\style{color:#6059f6;}{-1,17}}{\style{color:#6059f6;}{1} }} $$
Krok 4
Mnożymy licznik i mianownik tego ułamka przez ustalony wcześniej mnożnik.
$$\huge{\style{color:#6059f6;}{}\frac{\style{color:#6059f6;}{-1,17} · \style{color:#dc4b1d;}{100}}{\style{color:#6059f6;}{1} · \style{color:#dc4b1d;}{100}} = \style{color:#6059f6;}{-\frac{117}{100}} } $$
Krok 5
Zamieniamy na liczbę mieszaną "Wyciągamy całości".
Gdy licznik jest większy od mianownika ułamek jest ułamkiem niewłaściwym.
$$ \huge{\style{color:#6059f6;}{ 117 > 100 }} $$
Ułamek niewłaściwy zamieniamy na liczbę mieszaną - wyciągamy z niego całości.
Dzielimy licznik 117 przez 100.
100 w 117 mieści się 1 razy z resztą 17. Bo: 100 · 1 + 17 = 117
$$ \huge{\style{color:#6059f6;}{- \frac{117}{100}} = -\style{color:#f55f42;}{1} \frac{\style{color:#f6a017;}{17}}{\style{color:#6059f6;}{100}} } $$