Metoda 1
Lista wielokrotności
Aby znaleźć najmniejszą wspólną wielokrotność (NWW) dla liczb 30,24,9 tą metodą wypisujemy kolejne wielokrotności dla każdej z liczb. Powtarzamy to do chwili aż znajdziemy wspólną wielokrotność.
Obliczmy wielokrotności dla liczby 9:
9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 135, 144, 153, 162, 171, 180, 189, 198, 207, 216, 225, 234, 243, 252, 261, 270, 279, 288, 297, 306, 315, 324, 333, 342, 351, 360 ,
369, 378, Obliczmy wielokrotności dla liczby 24:
24, 48, 72, 96, 120, 144, 168, 192, 216, 240, 264, 288, 312, 336, 360 ,
384, 408, Obliczmy wielokrotności dla liczby 30:
30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360 ,
390, 420, Metoda 2
Rozkład na czynniki pierwsze
Aby znaleźć najmniejszą wspólną wielokrotność (NWW) dla liczb 30,24,9 tą metodą rozkładamy każdą z liczb na czynniki pierwsze.
Rozkład na czynniki pierwsze liczby 9.
A więc:
$$\huge{\style{color:#24a0a3;}{3 · 3} =\style{color:#6059f6;}{{3}^{2}} =\style{color:#6059f6;}{9} } $$
Rozkład na czynniki pierwsze liczby 24.
A więc:
$$\huge{\style{color:#24a0a3;}{2 · 2 · 2 · 3} =\style{color:#6059f6;}{{2}^{3} · {3}^{1}} =\style{color:#6059f6;}{24} } $$
Rozkład na czynniki pierwsze liczby 30.
A więc:
$$\huge{\style{color:#24a0a3;}{2 · 3 · 5} =\style{color:#6059f6;}{{2}^{1} · {3}^{1} · {5}^{1}} =\style{color:#6059f6;}{30} } $$
Teraz mnożymy wszystkie czynniki.
Jeśli dany czynnik powtarza się w naszych liczbach, wówczas do iloczynu czynników bierzemy czynnik tylko z tej liczby, w której występuje największą ilość razy.
Jeśli dany czynnik powtarza się w naszych liczbach i występuje taką samą ilość razy, wówczas do iloczynu czynników bierzemy go tylko z jednej liczby.
$$\huge{\style{color:#6059f6;}{{2}^{3} · {3}^{2} · {5}^{1}} =\style{color:#db471d;}{360} } $$
Metoda 3
Z wykorzystaniem największego wspólnego dzielnika (NWD)
Do tej metody wykorzystujemy zależność:
$$\huge{\style{color:#6059f6;}{ NWW(a,b)}=\style{color:#6059f6;}{\frac{a · b}{NWD(a,b)}}} $$
Jeżeli szukamy NWW dla większej ilości liczb niż dwie, wówczas korzystamy z zależności:
$$ \huge{ \style{color:#6059f6;}{NWW(a,b\style{color:#f8b15f;}{,c}\style{color:#24a0a3;}{,d})}=\style{color:#6059f6;}{\style{color:#24a0a3;}{NWW(}\style{color:#f8b15f;}{NWW(}NWW(a,b)\style{color:#f8b15f;}{,c)}\style{color:#24a0a3;}{,d)}}} $$
Z powyższego wynika, że NWW wyznaczamy najpierw dla jednej pary liczb. Wynik łączymy w parę z kolejną liczbą i obliczmy NWW, następnie ten wynik łączymy w parę z kolejną liczbą itd.
$$\huge{\style{color:#6059f6;}{ NWW(9,24,30)=NWW(NWW(9,24),30)}} $$
Obliczmy pierwsze NWW dla liczb 9,24
$$\huge{\style{color:#6059f6;}{NWW(9,24)= \frac{9 · 24}{NWD(9,24)}=\frac{216}{3} = \style{color:#dc4b1d;}{72 }} }$$
Obliczmy NWW dla wyniku 72 oraz kolejnej liczby 30
$$\huge{\style{color:#6059f6;}{NWW(\style{color:#dc4b1d;}{72},30)= \frac{72 · 30}{NWD(72,30)}=\frac{2160}{6} = \style{color:#dc4b1d;}{360 }} }$$