Loading [MathJax]/jax/output/HTML-CSS/jax.js

Kalkulator najmniejszej wspólnej wielokrotności dla liczb 1

Za pomocą kalkulatora NWW obliczysz najmniejszą wspólną wielokrotność dla 1. Dowiesz się i nauczysz jak obliczyć najmniejszą wspólną wielokrotność za pomocą różnych metod, w tym metodą listy wielokrotności, rozkładu na czynniki pierwsze oraz z wykorzystaniem największego wspólnego dzielnika. Oprócz wyniku w odpowiedzi uzyskasz wyjaśnienia wykonywanych czynności krok po kroku.

Najmniejsza wspólna wielokrotność liczb 1

Jeśli chcesz obliczyć NWW dla innych liczb w pole poniżej wpisz minimalnie dwie liczby oddzielone przecinkami, dla których chcesz obliczyć najmniejsza wspólną wielokrotność.


$$ \boldsymbol{\huge{\style{color:#6059f6;}{NWW(125,30) = 750}}} $$
Metoda 1
Lista wielokrotności

Aby znaleźć najmniejszą wspólną wielokrotność (NWW) dla liczb 125,30 tą metodą wypisujemy kolejne wielokrotności dla każdej z liczb. Powtarzamy to do chwili aż znajdziemy wspólną wielokrotność.

Obliczmy wielokrotności dla liczby 30:
30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 450, 480, 510, 540, 570, 600, 630, 660, 690, 720, 750 , 780, 810,

Obliczmy wielokrotności dla liczby 125:
125, 250, 375, 500, 625, 750 , 875, 1000,

Metoda 2
Rozkład na czynniki pierwsze

Aby znaleźć najmniejszą wspólną wielokrotność (NWW) dla liczb 125,30 tą metodą rozkładamy każdą z liczb na czynniki pierwsze.

Rozkład na czynniki pierwsze liczby 30.
302
153
55

A więc:
$$\huge{\style{color:#24a0a3;}{2 · 3 · 5} =\style{color:#6059f6;}{{2}^{1} · {3}^{1} · {5}^{1}} =\style{color:#6059f6;}{30} } $$

Rozkład na czynniki pierwsze liczby 125.
1255
255
55

A więc:
$$\huge{\style{color:#24a0a3;}{5 · 5 · 5} =\style{color:#6059f6;}{{5}^{3}} =\style{color:#6059f6;}{125} } $$

Teraz mnożymy wszystkie czynniki.
Jeśli dany czynnik powtarza się w naszych liczbach, wówczas do iloczynu czynników bierzemy czynnik tylko z tej liczby, w której występuje największą ilość razy.
Jeśli dany czynnik powtarza się w naszych liczbach i występuje taką samą ilość razy, wówczas do iloczynu czynników bierzemy go tylko z jednej liczby.
$$\huge{\style{color:#6059f6;}{{2}^{1} · {3}^{1} · {5}^{3}} =\style{color:#db471d;}{750} } $$
Metoda 3
Z wykorzystaniem największego wspólnego dzielnika (NWD)

Do tej metody wykorzystujemy zależność:
$$\huge{\style{color:#6059f6;}{ NWW(a,b)}=\style{color:#6059f6;}{\frac{a · b}{NWD(a,b)}}} $$$$\huge{\style{color:#6059f6;}{ NWW(30,125)}=\style{color:#6059f6;}{\frac{30 · 125}{NWD(30,125)}} = \style{color:#6059f6;}{\frac{3750}{5}} = \style{color:#dc4b1d;}{750} } $$
Zobacz jak znaleźć największy wspólny dzielnik dla liczb 30,125

Ostatnio wyszukiwane NWW


Kliknij i sprawdź obliczenia